52 research outputs found

    Barotropic thin shells with linear EOS as models of stars and circumstellar shells in general relativity

    Get PDF
    The spherically symmetric thin shells of the barotropic fluids with the linear equation of state are considered within the frameworks of general relativity. We study several aspects of the shells as completely relativistic models of stars, first of all the neutron stars and white dwarfs, and circumstellar shells. The exact equations of motion of the shells are obtained. Also we calculate the parameters of the equilibrium configurations, including the radii of static shells. Finally, we study the stability of the equilibrium shells against radial perturbations.Comment: final version; ps-version of figure is available by email request to [email protected]

    Mass of perfect fluid black shells

    Get PDF
    The spherically symmetric singular perfect fluid shells are considered for the case of their radii being equal to the event horizon (the black shells). We study their observable masses, depending at least on the three parameters, viz., the square speed of sound in the shell, instantaneous radial velocity of the shell at a moment when it reaches the horizon, and integration constant related to surface mass density. We discuss the features of black shells depending on an equation of state.Comment: 1 figure, LaTeX; final version + FA

    Cosmic Strings in the Abelian Higgs Model with Conformal Coupling to Gravity

    Full text link
    Cosmic string solutions of the abelian Higgs model with conformal coupling to gravity are shown to exist. The main characteristics of the solutions are presented and the differences with respect to the minimally coupled case are studied. An important difference is the absence of Bogomolnyi cosmic string solutions for conformal coupling. Several new features of the abelian Higgs cosmic strings of both types are discussed. The most interesting is perhaps a relation between the angular deficit and the central magnetic field which is bounded by a critical value.Comment: 22 pages, 10 figures; to appear in Phys. Rev.

    Gauge Invariant Hamiltonian Formalism for Spherically Symmetric Gravitating Shells

    Full text link
    The dynamics of a spherically symmetric thin shell with arbitrary rest mass and surface tension interacting with a central black hole is studied. A careful investigation of all classical solutions reveals that the value of the radius of the shell and of the radial velocity as an initial datum does not determine the motion of the shell; another configuration space must, therefore, be found. A different problem is that the shell Hamiltonians used in literature are complicated functions of momenta (non-local) and they are gauge dependent. To solve these problems, the existence is proved of a gauge invariant super-Hamiltonian that is quadratic in momenta and that generates the shell equations of motion. The true Hamiltonians are shown to follow from the super-Hamiltonian by a reduction procedure including a choice of gauge and solution of constraint; one important step in the proof is a lemma stating that the true Hamiltonians are uniquely determined (up to a canonical transformation) by the equations of motion of the shell, the value of the total energy of the system, and the choice of time coordinate along the shell. As an example, the Kraus-Wilczek Hamiltonian is rederived from the super-Hamiltonian. The super-Hamiltonian coincides with that of a fictitious particle moving in a fixed two-dimensional Kruskal spacetime under the influence of two effective potentials. The pair consisting of a point of this spacetime and a unit timelike vector at the point, considered as an initial datum, determines a unique motion of the shell.Comment: Some remarks on the singularity of the vector potantial are added and some minor corrections done. Definitive version accepted in Phys. Re

    Complete Classification of the String-like Solutions of the Gravitating Abelian Higgs Model

    Get PDF
    The static cylindrically symmetric solutions of the gravitating Abelian Higgs model form a two parameter family. In this paper we give a complete classification of the string-like solutions of this system. We show that the parameter plane is composed of two different regions with the following characteristics: One region contains the standard asymptotically conic cosmic string solutions together with a second kind of solutions with Melvin-like asymptotic behavior. The other region contains two types of solutions with bounded radial extension. The border between the two regions is the curve of maximal angular deficit of 2π2\pi.Comment: 12 pages, 4 figure

    A Wormhole at the core of an infinite cosmic string

    Get PDF
    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2π2 \pi deficit at the core. We show that the coordinate singularity associated to this defect can be interpreted as a traversible wormhole lodging at the the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott's like solution, that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.

    Electroweak String Configurations with Baryon Number

    Full text link
    In the context of electroweak strings, the baryon number anomaly equation may be reinterpreted as a conservation law for baryon number minus helicity. Since the helicity is a sum of the link and twist numbers, linked or twisted loops of electroweak string carry baryon number. We evaluate the change in the baryon number obtained by delinking loops of electroweak ZZ-string and show that twisted electroweak string segments may be regarded as extended sphalerons. We also suggest an alternative scenario for electroweak baryogenesis.Comment: 11 pages, figure available on request. Added discussion of string-sphaleron connection for non-vanishing Weinberg angle and shortened discussion on formation of linked configuration

    Euclidean Black Hole Vortices

    Get PDF
    We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviours, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Euclidean Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.Comment: 24 page

    Photometric redshifts for supernovae Ia in the Supernova Legacy Survey

    Full text link
    We present a method using the SALT2 light curve fitter to determine the redshift of Type Ia supernovae in the Supernova Legacy Survey (SNLS) based on their photometry in g', r', i' and z'. On 289 supernovae of the first three years of SNLS data, we obtain a precision σΔz/(1+z)=0.022\sigma_{\Delta z/(1+z)} = 0.022 on average up to a redshift of 1.0, with a higher precision of 0.016 for z<0.45 and a lower one of 0.025 for z>0.45. The rate of events with Δz/(1+z)>0.15|\Delta z|/(1+z)>0.15 (catastrophic errors) is 1.4%. Both the precision and the rate of catastrophic errors are better than what can be currently obtained using host galaxy photometric redshifts. Photometric redshifts of this precision may be useful for future experiments which aim to discover up to millions of supernovae Ia but without spectroscopy for most of them.Comment: 7 pages, 9 figures, published in Astronomy and Astrophysic

    Topological Defects as Seeds for Eternal Inflation

    Full text link
    We investigate the global structure of inflationary universe both by analytical methods and by computer simulations of stochastic processes in the early Universe. We show that the global structure of the universe depends crucially on the mechanism of inflation. In the simplest models of chaotic inflation the Universe looks like a sea of thermalized phase surrounding permanently self-reproducing inflationary domains. In the theories where inflation occurs near a local extremum of the effective potential corresponding to a metastable state, the Universe looks like de Sitter space surrounding islands of thermalized phase. A similar picture appears even if the state ϕ=0\phi = 0 is unstable but the effective potential has a discrete symmetry ϕ=ϕ\phi \to =-\phi. In this case the Universe becomes divided into domains containing different phases. These domains will be separated from each other by domain walls. However, unlike ordinary domain walls, these domain walls will inflate, and their thickness will exponentially grow. In the theories with continuous symmetries inflation generates exponentially expanding strings and monopoles surrounded by thermalized phase. Inflating topological defects will be stable, and they will unceasingly produce new inflating topological defects. This means that topological defects may play a role of indestructible seeds for eternal inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint SU--ITP--94--
    corecore